Do you have an example of a contrived example and explanation of why it is contrived, for the non-biologist to see why it is contrived?
I once tried reading a few chapters of a bioinformatics book explaining DNA, RNA, protein creation, etc. The basic idea seems very simple but to my mind they explained it non-systematically with too many words. There seems to be an internal information structure in these RNA- and DNA- related processes that was not being concisely presented and it seemed that if the writers presented the material in terms of computer-science concepts, so much time could be saved.
You can't present it as computer science concepts because it's not computer science.
For example, the central dogma of DNA transcribed to RNA translated to protein seems simple, but it's not.
In almost every instance, there are vague 'rules' and many many exceptions to these rules. For example, often coding regions in genes start with an ATG, but sometimes they don't. Sometimes splice sites (where the non-coding parts of transcripts called introns are chopped out) can be predicted, but a portion of the transcripts are not spliced at predicted sites for no obvious reason. Sometimes the predictions are just wrong. Sometimes the generated proteins are modified at specific locations which impacts their function, but again, sometimes not. Even whether the gene itself is 'switched on' (i.e. able to be transcribed) is impacted by many many things, such as unidentified transcription factors, or whether the chromosomal location itself is accessible or not. There are many many other things that impact the process.
There is no simple underlying concept as the system is not designed, it evolved and is quite different among different organisms, and even in different tissues or timepoints in the same organism. As long as it works and provides enough benefit to avoid negative selection, that's enough.
It starts by defining a cell as a bakery. First of all, what exactly is more systematic in comparing a cell to a bakery? Other than the fact that both things produce crap the analogy has no real substance. And there are so many wrong facts in that one paragraph (many of our genes are present as more than two copies in our genome, for one).
You are absolutely correct, there’s an information theoretical underpinning of genomics and systems biology that’s rarely if ever tackled in text books but (a) neither does this course tackle it, and (b) you can’t just skip on biochem basics and Jump to that. That’s like trying to become a physicist without learning math.
There's nothing about sequencing by synthesis, how blocking nucleotides are added one after another, pictures of the fluorescent nucleotides on the flow cells are image analysed, etc.
I once tried reading a few chapters of a bioinformatics book explaining DNA, RNA, protein creation, etc. The basic idea seems very simple but to my mind they explained it non-systematically with too many words. There seems to be an internal information structure in these RNA- and DNA- related processes that was not being concisely presented and it seemed that if the writers presented the material in terms of computer-science concepts, so much time could be saved.