Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

> i.e there isn't a "I don't have enough information" option.

This is true in terms of default mode for LLMs, but there's a fair amount of research dedicated to the idea of training models to signal when they need grounding.

SelfRAG is an interesting, early example of this [1]. The basic idea is that the model is trained to first decide whether retrieval/grounding is necessary and then, if so, after retrieval it outputs certain "reflection" tokens to decide whether a passage is relevant to answer a user query, whether the passage is supported (or requires further grounding), and whether the passage is useful. A score is calculated from the reflection tokens.

The model then critiques itself further by generating a tree of candidate responses, and scoring them using a weighted sum of the score and the log probabilities of the generated candidate tokens.

We can probably quibble about the loaded terms used here like "self-reflection", but the idea that models can be trained to know when they don't have enough information isn't pure fantasy today.

[1] https://arxiv.org/abs/2310.11511

EDIT: I should also note that I generally do side with Lecun's stance on this, but not due to the "not enough information" canard. I think models learning from abstraction (i.e. JEPA, energy-based models) rather than memorization is the better path forward.



Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: