Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

They're interpretable in a similar way to how interpretable CNNs are. Not by a coincidence.

For CNNs, we know very well how the early layers work - edge detectors, curve detectors, etc. This understanding decays further into the model. In the brain, V1/V2 are similarly well studied, but it breaks down deeper into the visual cortex - and the sheer architectural complexity there sure doesn't help.



Well, in terms of architectural complexity you have to wonder what something intelligent is going to look like, it’s probably not going to be very simple, but that doesn’t mean it can’t be readily interpreted. For the brain we can ascribe structure to evolutionary pressure, IMO there isn’t quite as powerful a principle at play with LLMs and transformer architectures and such. Like how does minimizing reconstruction loss help us understand the 50th, 60th layer of a neural network? It becomes very hard to interpret, compared to say the function of the amygdala or hippocampus in the context of evolutionary pressure.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: